Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667929

RESUMO

Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.

2.
Int J Food Microbiol ; 411: 110551, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171235

RESUMO

Nanomaterials are widely investigated in sustainable agriculture owing to their unique physicochemical properties, especially Cu-based nanomaterial with eco-friendliness and essential for plant. However, the effect of CuO nanomaterial on Bipolaris sorokiniana (B. sorokiniana) is yet to be systematically understood. In this study, a three-dimension hierarchical structure CuO nanoflower (CuO NF) with ultrathin petals and excellent dispersibility in water was constructed and proved to have outstanding antifungal activity against B. sorokiniana with the inhibition rate of 86 % in mycelial growth, 74 % in mycelial dry weight and 75 % in conidial germination. Furthermore, the antifungal mechanism was assigned to the production of reactive oxygen species in intracellular caused by antioxidant mimicking activity of CuO NF to damage of cell membrane integrity and result cellular leakage. Additionally, the good control effect of CuO NF on wheat diseases caused by B. sorokiniana was demonstrated through pot experiment. This article firstly reveals the antifungal activity and mechanism of CuO NF on B. sorokiniana, and establishes the relationship between enzyme-like activity of CuO NF and its antifungal activity, which provides a promising application of Cu-based nanomaterial as nanofungicide in plant protection and a theoretical foundation for structure design of nanomaterials to improve their antifungal activities.


Assuntos
Ascomicetos , Nanoestruturas , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Nanoestruturas/química
3.
Mol Biol Rep ; 50(10): 8213-8224, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561326

RESUMO

BACKGROUND: ToxA, a necrotrophic effector protein, is present in the genome of fungal species like Parastagnospora nodorum, Pyrenophora tritici-repentis and Bipolaris sorokiniana. Tsn1 is the sensitivity gene in the host whose presence indicates more susceptibility to ToxA carrying pathogen, and ToxA-Tsn1 interaction follows an inverse gene-for-gene relationship. METHODS AND RESULTS: The present study involved cloning and expressing the ToxA1 haplotype from B. sorokiniana. It was found that the amplicon exhibited an expected product size of 471 bp. Sequence analysis of the ToxA1 nucleotide sequence revealed the highest identity, 99.79%, with P. tritici-repentis. The protein expression analysis showed peak expression at 16.5 kDa. Phylogenetic analysis of the ToxA1 sequence from all the Bipolaris isolates formed an independent clade along with P. tritici-repentis and diverged from P. nodorum. ToxA-Tsn1 interaction was studied in 18 wheat genotypes (11 Tsn1 and 7 tsn1) at both seedling and adult stages, validating the inverse gene-for-gene relationship, as the toxin activity was highest in the K68 genotype (Tsn1) and lowest in WAMI280 (tsn1). CONCLUSION: The study indicates that the haplotype ToxA1 is prevailing in the Indian population of B. sorokiniana. It would be desirable for wheat breeders to select genotypes with tsn1 locus for making wheat resistant to spot blotch.


Assuntos
Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Haplótipos/genética , Filogenia , Índia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
4.
Mol Breed ; 43(2): 10, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37313131

RESUMO

Black point disease is a serious concern in wheat production worldwide. In this study, we aimed to identify the major quantitative trait loci (QTL) for resistance to black point caused by Bipolaris sorokiniana and develop molecular markers for marker-assisted selection (MAS). A recombinant inbred line (RIL) population derived from a cross between PZSCL6 (highly susceptible) and Yuyou1 (moderately resistant) was evaluated for black point resistance at four locations under artificial inoculation with B. sorokiniana. Thirty resistant and 30 susceptible RILs were selected to form resistant and susceptible bulks, respectively, which were genotyped by the wheat 660 K SNP array. Two hundred and four single-nucleotide polymorphisms (SNPs) were identified, among which 41(20.7%), 34 (17.2%), 22 (11.1%), and 22 (11.1%) were located on chromosomes 5A, 5B, 4B, and 5D, respectively. The genetic linkage map for the RIL population was constructed using 150 polymorphic SSR and dCAPS markers. Finally, five QTL were detected on chromosomes 5A, 5B, and 5D, designated QBB.hau-5A, QBB.hau-5B.1, QBB.hau-5B.2, QBB.hau-5D.1, and QBB.hau-5D.2, respectively. All resistance alleles were contributed by the resistant parent Yuyou1. QBB.hau-5D.1 is likely to be a new locus for black point resistance. The markers Xwmc654 and Xgwm174 linked to QBB.hau-5A and QBB.hau-5D.1, respectively, have potential utility in MAS-based breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01356-6.

5.
Front Microbiol ; 14: 1149363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125175

RESUMO

Introduction: Bipolaris sorokiniana is the popular pathogenic fungi fungus which lead to common root rot and leaf spot on wheat. Generally, chemical fungicides are used to control diseases. However, the environmental pollution resulting from fungicides should not be ignored. It is important to study the mode of antagonistic action between biocontrol microbes and plant pathogens to design efficient biocontrol strategies. Results: An antagonistic bacterium DB2 was isolated and identified as Bacillus amyloliquefaciens. The inhibition rate of cell-free culture filtrate (CF, 20%, v/v) of DB2 against B. sorokiniana reached 92.67%. Light microscopy and scanning electron microscopy (SEM) showed that the CF significantly altered the mycelial morphology of B. sorokiniana and disrupted cellular integrity. Fluorescence microscopy showed that culture filtrate destroyed mycelial cell membrane integrity, decreased the mitochondrial transmembrane potential, induced reactive oxygen species (ROS) accumulation, and nuclear damage which caused cell death in B. sorokiniana. Moreover, the strain exhibited considerable production of protease and amylase, and showed a significant siderophore and indole-3-acetic acid (IAA) production. In the detached leaves and potted plants control assay, B. amyloliquefacien DB2 had remarkable inhibition activity against B. sorokiniana and the pot control efficacy was 75.22%. Furthermore, DB2 suspension had a significant promotion for wheat seedlings growth. Conclusion: B. amyloliquefaciens DB2 can be taken as a potential biocontrol agent to inhibit B. sorokiniana on wheat and promote wheat growth.

6.
Plant Biol (Stuttg) ; 25(5): 803-812, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37194683

RESUMO

Heat stress alters plant defence responses to pathogens. Short-term heat shock promotes infections by biotrophic pathogens. However, little is known about how heat shock affects infection by hemibiotrophic pathogens like Bipolaris sorokiniana (teleomorph: Cochliobolus sativus). We assessed the effect of heat shock in B. sorokiniana-susceptible barley (Hordeum vulgare cv. Ingrid) by monitoring leaf spot symptoms, B. sorokiniana biomass, ROS and plant defence-related gene expression following pre-exposure to heat shock. For heat shock, barley plants were kept at 49 °C for 20 s. B. sorokiniana biomass was assessed by qPCR, ROS levels determined by histochemical staining, while gene expression was assayed by RT-qPCR. Heat shock suppressed defence responses of barley to B. sorokiniana, resulting in more severe necrotic symptoms and increased fungal biomass, as compared to untreated plants. Heat shock-induced increased susceptibility was accompanied by significant increases in ROS (superoxide, H2 O2 ). Transient expression of plant defence-related antioxidant genes and a barley programmed cell death inhibitor (HvBI-1) were induced in response to heat shock. However, heat shock followed by B. sorokiniana infection caused further transient increases in expression of HvSOD and HvBI-1 correlated with enhanced susceptibility. Expression of the HvPR-1b gene encoding pathogenesis-related protein-1b increased several fold 24 h after B. sorokiniana infection, however, heat shock further increased transcript levels along with enhanced susceptibility. Heat shock induces enhanced susceptibility of barley to B. sorokiniana, associated with elevated ROS levels and expression of plant defence-related genes encoding antioxidants, a cell death inhibitor, and PR-1b. Our results may contribute to elucidating the influence of heat shock on barley defence responses to hemibiotrophic pathogens.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/fisiologia , Hordeum/genética , Espécies Reativas de Oxigênio , Plantas/genética , Expressão Gênica , Resposta ao Choque Térmico/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
7.
Plant Dis ; 107(10): 2939-2943, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37189044

RESUMO

Hop (Humulus lupulus) is a perennial herbaceous vine belonging to the family Cannabaceae. This crop is commercially grown for the brewing industry for its bitter and aromatic flavor, as well as its antiseptic properties. In June 2021, leaf spot and blight was observed on common hop plants in Buan-gun, Jeollabuk-do, South Korea. The typical symptoms were small to large, dark-brown, necrotic lesions with yellow halos on the leaves. This study aimed to clarify the causal agent of this disease. Two fungal species, Alternaria alternata and Bipolaris sorokiniana, were isolated from the diseased leaf samples and identified by combining morphological observations and phylogenetic analysis using sequence datasets of internal transcribed spacer (ITS), Alt a1, rpb2, endoPG, and OPA10-2; and ITS, gpd, and tef1, respectively. Pathogenicity of the fungal isolates on detached leaves and living plants revealed that B. sorokiniana is the causal pathogen of this disease, while A. alternata is potentially a saprophyte. Fungicide sensitivity of the pathogen B. sorokiniana was further estimated in vitro using three classes of fungicides represented by fluxapyroxad, pyraclostrobin, and hexaconazole. The effective concentrations that inhibited 50% of spore germination (EC50) were 0.72, 1.90, and 0.68 µg ml-1, respectively. Moreover, all of these fungicides were able to control B. sorokiniana on detached common hop leaves at their recommended concentrations. In conclusion, this study reports leaf spot and blight of common hop caused by B. sorokiniana for the first time and proposes potential fungicides for this disease.


Assuntos
Fungicidas Industriais , Humulus , Fungicidas Industriais/farmacologia , Filogenia , República da Coreia
8.
Plant Dis ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189047

RESUMO

Creeping bentgrass (Agrostis stolonifera L.), is one of the major cool-season turfgrass species, which is widely planted in putting greens at golf courses in China (Zhou et al. 2022). In June 2022, an unknown disease with reddish-brown spots (2-5 cm in diameter) were observed on 'A4' creeping bentgrass putting greens at Longxi golf course in Bejing. As the disease progressed, the spots coalesced and formed irregular patches (15-30 cm in diameter). When looking closely, the leaves were wilting, yellowing and melting out from the foliar tips to the crowns. The disease incidence was estimated up to 10-20 % of each putting green and a total of five putting greens had similar symptoms as described above. Three to five symptomatic samples were collected from each green. Diseased leaves were cut into pieces, surface sterilized in 0.6% sodium hypochlorite (NaClO) for 1 min, washed three times with sterilized water, air dried and placed on potato dextrose agar (PDA) containing 50 mg L-1 streptomycin sulfate and tetracycline. Plates were incubated in the dark at 25 °C for 3 days, and fungal isolates with similar morphology (irregular cultures with dark-brown back and light-brown to white surface) was consistently recovered. Pure cultures were obtained by repeat hyphal-tip transfer. The fungus did not grow well on PDA medium, radial growth was estimated 1.5 mm/d, and dark-brown colony was surrounded by light-white margin. However, it grew fast on creeping bentgrass leaf extract (CBLE) medium, CBLE medium was produced by adding 0.75 g potato powder, 5 g agar and 20 mL creeping bentgrass leaf juice (with 1 g fresh creeping bentgrass leaf) into 250 mL sterile water. The colony was sparse and light-white, and radial growth was roughly 9 mm/d on CBLE medium. Conidia were spindle-shaped, olive to brown in color, pointy or obtuse at both ends, 4 to 8 septa, and a size range of 9.85 to 20.20 × 26.26 to 45.64 µm (14.85 µm × 40.62 µm average, n = 30). Genomic DNA of two representative isolates (HH2 and HH3) was extracted, the nuclear ribosomal internal transcribed spacer (ITS) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) region were amplified with primers ITS1/ITS4 (White et al. 1990) and gpd1/gpd2 (Berbee et al. 1999), respectively. The ITS (OQ363182 and OQ363183) and GAPDH (OQ378336 and OQ378337) sequences were deposited in GenBank. BLAST analyses revealed that the sequences shared 100% and 99% similarity with the published ITS (CP102792) and GAPDH (CP102794) of B. sorokiniana strain LK93, respectively. To complete Koch's postulates, 3 plastic pots (15 cm height × 10 cm top diameter × 5 cm bottom diameter, three replicates for the isolate HH2) were seeded with creeping bentgrass and inoculated with a spore suspension (1×105 conidia/mL) after two months of plant growths. Healthy creeping bentgrass inoculated with distilled water served as controls. All pots were covered with plastic bags, placed in a growth chamber with a 12-h day/night cycle at 30/25°C and 90% relative humidity. Disease symptoms (yellowing and melting out leaf) were noted after 7 days. B. sorokiniana was recovered from the diseased leaves and identified morphologically and molecularly as described above. To our knowledge, this is the first report of melting out on creeping bentgrass caused by B. sorokiniana in China. The report here will provide a scientific basis for developing management strategies on this disease in the future. Additional study is needed to investigate the prevalence of the disease on putting greens from golf courses in larger regions of China.

9.
Plant Pathol J ; 39(2): 159-170, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37019826

RESUMO

Spot blotch disease of wheat caused by Bipolaris sorokiniana (Sacc.) Shoem is considered as an economically important disease which affects all the growing stages of wheat crop. Therefore, it is important to search some effective management strategies against the spot blotch pathogen. Some synthetic elicitor compounds (salicylic acid, isonicotinic acid, and chitosan) and nano-particles (silver and aluminum) were tested against the pathogen to observe the change in biochemical activity and defense action of wheat plant against spot blotch disease. All the tested elicitor compounds and nano-particles showed a significant increase in activity of peroxidase, polyphenol oxidase (PPO), and total phenol over control. The highest increase in activity of peroxidase was recorded at 72 h from chitosan at 2 mM and 96 h from silver nano-particle at 100 ppm. Maximum PPO and total phenol activity were recorded from chitosan at 2 mM and silver nano-particle at 100 ppm as compared to pathogen-treated and healthy control. The lowest percent disease index, lowest no. of spots/leaf, and no. of infected leaves/plant were found in silver nano-particle at 100 ppm and chitosan at 2 mM, respectively. The use of defense inducer compounds results in significantly up-regulated enzymatic activity and reduced spot blotch disease. Therefore, chitosan and silver nano-particle could be used as alternative methods for the management of spot blotch disease.

10.
Front Plant Sci ; 14: 1098648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895883

RESUMO

Spot blotch (SB) caused by Bipolaris sorokiniana (teleomorph Cochliobolus sativus) is one of the devastating diseases of wheat in the warm and humid growing areas around the world. B. sorokiniana can infect leaves, stem, roots, rachis and seeds, and is able to produce toxins like helminthosporol and sorokinianin. No wheat variety is immune to SB; hence, an integrated disease management strategy is indispensable in disease prone areas. A range of fungicides, especially the triazole group, have shown good effects in reducing the disease, and crop-rotation, tillage and early sowing are among the favorable cultural management methods. Resistance is mostly quantitative, being governed by QTLs with minor effects, mapped on all the wheat chromosomes. Only four QTLs with major effects have been designated as Sb1 through Sb4. Despite, marker assisted breeding for SB resistance in wheat is scarce. Better understanding of wheat genome assemblies, functional genomics and cloning of resistance genes will further accelerate breeding for SB resistance in wheat.

11.
Plants (Basel) ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36840176

RESUMO

Common root rot caused by Bipolaris sorokiniana infestation in wheat is one of the main reasons for yield reduction in wheat crops worldwide. The bacterium strain JK-25 used in the current investigation was isolated from wheat rhizosphere soil and was later identified as Bacillus halotolerans based on its morphological, physiological, biochemical, and molecular properties. The strain showed significant antagonism to B. sorokiniana, Fusarium oxysporum, Fusarium graminearum, and Rhizoctonia zeae. Inhibition of B. sorokiniana mycelial dry weight and spore germination rate by JK-25 fermentation supernatant reached 60% and 88%, respectively. The crude extract of JK-25 was found, by Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), to contain the surfactin that exerted an inhibitory effect on B. sorokiniana. The disruption of mycelial cell membranes was observed under laser scanning confocal microscope (LSCM) after treatment of B. sorokiniana mycelium with the crude extract. The antioxidant enzyme activity of B. sorokiniana was significantly reduced and the oxidation product malondialdehyde (MDA) content increased after treatment with the crude extract. The incidence of root rot was significantly reduced in pot experiments with the addition of JK-25 culture fermentation supernatant, which had a significant biological control effect of 72.06%. Its ability to produce siderophores may help to promote wheat growth and the production of proteases and pectinases may also be part of the strain's role in suppressing pathogens. These results demonstrate the excellent antagonistic effect of JK-25 against B. sorokiniana and suggest that this strain has great potential as a resource for biological control of wheat root rot strains.

12.
Plants (Basel) ; 11(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365440

RESUMO

Wheat is one of the most widely grown and consumed food crops in the world. Spot blotch and terminal heat stress are the two significant constraints mainly in the Indo-Gangetic plains of South Asia. The study was undertaken using 185 recombinant lines (RILs) derived from the interspecific hybridization of 'Triticum aestivum (HUW234) × T. spelta (H+26)' to reveal genomic regions associated with tolerance to combined stress to spot blotch and terminal heat. Different physiological (NDVI, canopy temperature, leaf chlorophyll) and grain traits (TGW, grain size) were observed under stressed (spot blotch, terminal heat) and non-stressed environments. The mean maturity duration of RILs under combined stress was reduced by 12 days, whereas the normalized difference vegetation index (NDVI) was 46.03%. Similarly, the grain size was depleted under combined stress by 32.23% and thousand kernel weight (TKW) by 27.56% due to spot blotch and terminal heat stress, respectively. The genetic analysis using 6734 SNP markers identified 37 significant loci for the area under the disease progress curve (AUDPC) and NDVI. The genome-wide functional annotation of the SNP markers revealed gene functions such as plant chitinases, NB-ARC and NBS-LRR, and the peroxidase superfamily Cytochrome P450 have a positive role in the resistance through a hypersensitive response. Zinc finger domains, cysteine protease coding gene, F-box protein, ubiquitin, and associated proteins, play a substantial role in the combined stress of spot blotch and terminal heat in bread wheat, according to genomic domains ascribed to them. The study also highlights T. speltoides as a source of resistance to spot blotch and terminal heat tolerance.

13.
Microorganisms ; 10(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36296270

RESUMO

The antimicrobial properties of graphene in vitro have been widely reported. However, compared to research performed on graphene's antibacterial properties, there have been relatively few studies assessing graphene's antifungal properties. In particular, evaluating graphene's pathogenic effects on host plants in vivo, which is critical to using graphene in disease control, has rarely been performed. In this study, the fungal pathogen of wheat, barley, and other plants, Bipolaris sorokiniana (B. sorokiniana) and graphene oxide (GO) were selected for materials. A combination of physiological, cytological, and biochemical approaches was used to explore how GO affects the growth and pathogenicity of B. sorokiniana. The mycelial growth and spore germination of B. sorokiniana were both inhibited in a dose-dependent manner by GO treatment. The addition of GO significantly alleviated the infection of pathogenic fungi in host plants. The results of scanning electron microscopy demonstrated that the inhibitory effect of GO on B. sorokiniana was primarily related to the destruction of the cell membrane. Our study confirmed the antifungal effect of graphene in vitro and in vivo, providing an experimental basis for applying graphene in disease resistance, which is of great significance for agricultural and forestry production.

14.
Antioxidants (Basel) ; 11(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36139828

RESUMO

Spot blotch disease of wheat, caused by the fungus Bipolaris sorokiniana (Sacc.) Shoem., produces several toxins which interact with the plants and thereby increase the blightening of the wheat leaves, and Bipolaroxin is one of them. There is an urgent need to decipher the molecular interaction between wheat and the toxin Bipolaroxin for in-depth understanding of host-pathogen interactions. In the present study, we have developed the three-dimensional structure of G-protein alpha subunit from Triticum aestivum. Molecular docking studies were performed using the active site of the modeled G-protein alpha and cryo-EM structure of beta subunit from T. aestivum and 'Bipolaroxin'. The study of protein-ligand interactions revealed that six H-bonds are mainly formed by Glu29, Ser30, Lys32, and Ala177 of G-alpha with Bipolaroxin. In the beta subunit, the residues of the core beta strand domain participate in the ligand interaction where Lys256, Phe306, and Leu352 formed seven H-bonds with the ligand Bipolaroxin. All-atoms molecular dynamics (MD) simulation studies were conducted for G-alpha and -beta subunit and Bipolaroxin complexes to explore the stability, conformational flexibility, and dynamic behavior of the complex system. In planta studies clearly indicated that application of Bipolaroxin significantly impacted the physio-biochemical pathways in wheat and led to the blightening of leaves in susceptible cultivars as compared to resistant ones. Further, it interacted with the Gα and Gß subunits of G-protein, phenylpropanoid, and MAPK pathways, which is clearly supported by the qPCR results. This study gives deeper insights into understanding the molecular dialogues between Bipolaroxin and the Gα and Gß subunits of the wheat heterotrimeric G-protein during host-pathogen interaction.

15.
Int J Biol Macromol ; 220: 721-732, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981683

RESUMO

Tup1, a conserved transcriptional repressor, plays a critical role in the growth and development of fungi. Here, we identified a BsTup1 gene from the plant pathogenic fungus Bipolaris sorokiniana. The expression of BsTup1 showed a more than three-fold increase during the conidial stage compared with mycelium stage. Deletion of BsTup1 led to decrease hyphal growth and defect in conidia formation. A significant difference was detected in osmotic, oxidative, or cell wall stress responses between the WT and ΔBsTup1 strains. Pathogenicity assays showed that virulence of the ΔBsTup1 mutant was dramatically decreased on wheat and barely leaves. Moreover, it was observed that hyphal tips of the mutants could not form appressorium-like structures on the inner epidermis of onion and barley coleoptile. Yeast two-hybrid assays indicated that BsTup1 could interact with the BsSsn6. RNAseq revealed significant transcriptional changes in the ΔBsTup1 mutant with 2369 genes down-regulated and 2962 genes up-regulated. In these genes, we found that a subset of genes involved in fungal growth, sporulation, cell wall integrity, osmotic stress, oxidation stress, and pathogenicity, which were misregulated in the ΔBsTup1 mutant. These data revealed that BsTup1 has multiple functions in fungal growth, development, stress response and pathogenesis in B. sorokiniana.


Assuntos
Bipolaris , Hordeum , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Virulência/genética
16.
3 Biotech ; 12(7): 151, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35747503

RESUMO

Spot blotch disease of wheat caused by Bipolaris sorokiniana Boerma (Sacc.) is an emerging problem in South Asian countries. Whole genome of a highly virulent isolate of B. sorokiniana BS112 (BHU, Uttar Pradesh; Accession no. GCA_004329375.1) was sequenced using a hybrid assembly approach. Secreted proteins, virulence gene(s), pathogenicity-related gene(s) were identified and the role of ToxA gene present in this genome, in the development of disease was recognized. ToxA gene (535 bp) was analyzed and identified in the genome of B. sorokiniana (BS112) which revealed 100% homology with the ToxA gene of Pyrenophora tritici repentis (Accession no. MH017419). Furthermore, ToxA gene was amplified, sequenced and validated in 39 isolates of B. sorokiniana which confirmed the presence of ToxA gene in all the isolates taken for this study. All ToxA sequences were submitted in NCBI database (MN601358-MN601396). As ToxA gene interacts with Tsn1 gene of host, 13 wheat genotypes were evaluated out of which 5 genotypes (38.4%) were found to be Tsn1 positive with more severe necrotic lesions compared to Tsn1-negative wheat genotypes. In vitro expression analysis of ToxA gene in the pathogen B. sorokiniana using qPCR revealed maximum upregulation (14.67 fold) at 1st day after inoculation (DAI) in the medium. Furthermore, in planta expression analysis of ToxA gene in Tsn1-positive and Tsn1-negative genotypes, revealed maximum expression (7.89-fold) in Tsn1-positive genotype, Agra local at 5th DAI compared to Tsn1-negative genotype Chiriya 7 showing minimum expression (0.048-fold) at 5th DAI. In planta ToxA-Tsn1 interaction studies suggested that spot blotch disease is more severe in Tsn1-positive genotypes, which will be helpful in better understanding and management of spot blotch disease of wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03213-3.

17.
Front Microbiol ; 13: 807014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356527

RESUMO

Seco-sativene sesquiterpenoids are an important member of phytotoxins and plant growth regulators isolated from a narrow spectrum of fungi. In this report, eight seco-sativene sesquiterpenoids (1-8) were first analyzed using the UPLC-Q-TOF-MS/MS technique in positive mode, from which their mass fragmentation pathways were suggested. McLafferty rearrangement, 1,3-rearrangement, and neutral losses were considered to be the main fragmentation patterns for the [M+1]+ ions of 1-8. According to the structural features (of different substitutes at C-1, C-2, and C-13) in compounds 1-8, five subtypes (A-E) of seco-sativene were suggested, from which subtypes A, B/D, and E possessed the diagnostic daughter ions at m/z 175, 189, and 203, respectively, whereas subtype C had the characteristic daughter ion at m/z 187 in the UPLC-Q-TOF-MS/MS profiles. Based on the fragmentation patterns of 1-8, several known compounds (1-8) and two new analogues (9 and 10) were detected in the extract of plant pathogen fungus Bipolaris sorokiniana based on UPLC-Q-TOF-MS/MS analysis, of which 1, 2, 9, and 10 were then isolated and elucidated by NMR spectra. The UPLC-Q-TOF-MS/MS spectra of these two new compounds (9 and 10) were consistent with the fragmentation mechanisms of 1-8. Compound 1 displayed moderate antioxidant activities with IC50 of 0.90 and 1.97 mM for DPPH and ABTS+ scavenging capacity, respectively. The results demonstrated that seco-sativene sesquiterpenoids with the same subtypes possessed the same diagnostic daughter ions in the UPLC-Q-TOF-MS/MS profiles, which could contribute to structural characterization of seco-sativene sesquiterpenoids. Our results also further supported that UPLC-Q-TOF-MS/MS is a powerful and sensitive tool for dereplication and detection of new analogues from crude extracts of different biological origins.

18.
Front Plant Sci ; 13: 835095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310648

RESUMO

Spot blotch caused by the fungus Bipolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions of the world. Hence, the major objective of this study was to identify consistent genotyping-by-sequencing (GBS) markers associated with spot blotch resistance using genome-wide association mapping on a large set of 6,736 advanced bread wheat breeding lines from the International Maize and Wheat Improvement Center. These lines were phenotyped as seven panels at Agua Fria, Mexico between the 2013-2014 and 2019-2020 crop cycles. We identified 214 significant spot blotch associated GBS markers in all the panels, among which only 96 were significant in more than one panel, indicating a strong environmental effect on the trait and highlights the need for multiple phenotypic evaluations to identify lines with stable spot blotch resistance. The 96 consistent GBS markers were on chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B, 7A, 7B, and 7D, including markers possibly linked to the Lr46, Sb1, Sb2 and Sb3 genes. We also report the association of the 2NS translocation from Aegilops ventricosa with spot blotch resistance in some environments. Moreover, the spot blotch favorable alleles at the 2NS translocation and two markers on chromosome 3BS (3B_2280114 and 3B_5601689) were associated with increased grain yield evaluated at several environments in Mexico and India, implying that selection for favorable alleles at these loci could enable simultaneous improvement for high grain yield and spot blotch resistance. Furthermore, a significant relationship between the percentage of favorable alleles in the lines and their spot blotch response was observed, which taken together with the multiple minor effect loci identified to be associated with spot blotch in this study, indicate quantitative genetic control of resistance. Overall, the results presented here have extended our knowledge on the genetic basis of spot blotch resistance in bread wheat and further efforts to improve genetic resistance to the disease are needed for reducing current and future losses under climate change.

19.
Front Plant Sci ; 13: 1050765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600913

RESUMO

Crop plants encounter a variety of biotic challenges in the field and faces significant reduction in crop yield. In the current scenario of an ever increasing global population, there is an urgent need to protect plant health by using sustainable approach to maximize the crop productivity and to mitigate the food demands. Nowadays, we mostly rely on chemical crop protection techniques, which are causing a number of environmental and health difficulties. Defence priming is a chemical-free, eco-friendly, and sustainable strategy of crop protection, which is also called "green vaccination. In the present study, for the first time, we used Trichoderma as a priming agent to protect wheat crop from spot blotch disease. We have established Trichoderma-mediated defence priming in wheat against Bipolaris sorokiniana for sustainable crop improvement. We have characterised the morphological, disease phenotype, biochemical and yield parameters of Trichoderma-primed and non-primed wheat under disease pressure. Trichoderma-primed plants were found to be more protected against B. sorokiniana as compared to non-primed plants. Biochemical studies indicated that there is no direct defence response after priming stimulus but the defence response was activated only after triggering stimulus in terms of enhanced defence metabolites in primed plants as compared to non-primed plants. In the present study, since defence was activated only when required, that is under disease pressure, there was no unnecessary allocation of resources towards defence. Hence, no yield penalty was shown in primed plants as compared to control. We further evaluated the inheritance of primed state to the next generation and found that progeny of primed parents also performed better than progeny of non-primed parents under disease pressure in terms of protection from B. sorokiniana as well as yield performance. This strategy has the potential to protect crop without any yield penalty and causing environmental degradation. Our research findings indicate that Trichoderma-mediated defence priming could be an alternative approach for improving wheat productivity under biotic stress. To be our best knowledge, this is the first documented report for the Trichoderma-mediated defence priming and induced inheritance in wheat plant. This study will open new arenas in sustainable crop protection strategies for the exploitation of defence priming in crop plants.

20.
Pathogens ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678349

RESUMO

Spot blotch is a highly destructive disease in wheat caused by the fungal pathogen Bipolaris sorokiniana (teleomorph, Cochliobolus sativus). It is prevalent in warm and humid areas, including Africa, Asia, Latin America, and the USA. In the present study, twelve isolates of B. sorokiniana were collected from wheat fields in three different geographical locations in India. The pathogenicity of seven sporulating isolates was assessed on 'DDK 1025', a spot blotch-susceptible wheat variety under greenhouse conditions. The isolate 'D2' illustrated the highest virulence, followed by 'SI' and 'BS52'. These three isolates were sequenced using the Illumina HiSeq1000 platform. The estimated genome sizes of the isolates BS52, D2, and SI were 35.19 MB, 39.32 MB, and 32.76 MB, with GC contents of 48.48%, 50.43%, and 49.42%, respectively. The numbers of pathogenicity genes identified in BS52, D2, and SI isolates were 2015, 2476, and 2018, respectively. Notably, the isolate D2 exhibited a relatively larger genome with expanded arsenals of Biosynthetic Gene Clusters (BGCs), CAZymes, secretome, and pathogenicity genes, which could have contributed to its higher virulence among the tested isolates. This study provides the first comparative genome analysis of the Indian isolates of B. sorokiniana using whole genome sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...